

Multi-color optical observation of V404 Cygni

Yutaro Tachibana, Tokyo Institute of Technology

V404 Cyg (=GS 2023+338)

Discovered by GINGA satellite (Makino 1989, Kitamoto et al. 1989) Low-mass black hole binary

Observatories Watching Transients Happen

Physical parameters of binary system are well determined

- * Мвн : 9+0.2_{-0.6} М.
- M_{star} : 0.7^{+0.3}-0.2 M⊙
 (Khargharia et al. 2010)
- * Porb : 6.4714 d …

The variability of V404 Cygni during a outburst is different from the typical BHB's one.

Optical Light Curves

All of the optical bands (g', Rc, and lc) seems to be **perfectly correlated**

Observatories Watching Transients Happen

Composing two distinct variations; slow-big swings & small wiggles

- Slow-big swinging component show very large variations (~ 3 mag) on a timescale shorter than an hour
- Fast-small wiggling component have variations smaller than 1 mag on a timescale about some minutes

 \cdot Fast-small wiggling component is the standard accretion disk

Conclusion

- Slow-big swinging component exhibits a power-law spectrum
- \cdot The optical variation is the mixture of these components

2 blackbody 1 Standard accretion disk ${old C}$ Rc Ic 0 -1 Power-law -2 Irradiated accretion disk -2 2 -3 0 $\pmb{\alpha}_{ m g'Rc}$

Spectral Variability

GROWTH Global Relay of Observatories Watching Transients Happen

Flux-Flux plot : Correlation diagram between different energy bands

The slope of the locus (k) is proportional to the spectral index(α): $\log(k) \propto \alpha$

Correlation Analysis

Correlation Analysis

Flux-Flux plot : Correlation diagram between different energy bands The slope of the locus (k) is proportional to the spectral index(α): $\log(k) \propto \alpha$

of Observatories Watching Transients Happen

7

Spectral Variability

Estimating the origins of LVC and HVC from derived spectral indices

Color-color diagram

LVC : Emission from the standard accretion disk?

HVC : power-law spectrum → Corona locating nearby the disk?

Global Relay of Observatories Watching Transients Happen

Verifying the interpretation : Optical SED = standard disk + power-law

1. Determining the inner most temperature from spectral indices of LVC

Optical SED

- 2. Determining the power-law index from spectral indices of HVC
- 3. Fitting these models to the original data

Variation of HVC is always dominant without any assumption of normalization

Global Relay of Observatories Watching Transients Happen

NIR-UV SED for V404 Cyg can be reconstructed with our model

NIR-UV SED

We performed time domain analysis of the optical variation in V404 Cyg
 Decomposed the optical variation to two distinct components:

 low-variable component (LVC) and high-variable component (HVC)
 Derived characteristics of these components

- * LVC : its spectrum is similar with that of **standard disk model**
- * HVC : its spectrum follows the power-law model

We performed spectral energy distribution (SED) analysis from NIR to UV

- The SED can be interpreted as **the sum of LVC and HVC**
- Optical variations are able to reproduced by almost only the changes of

HVC (consistent with the result of the time domain analysis)

