

Global Relay of Observatories Watching Transients Happen

Electromagnetic Counterparts to Gravitational Waves

Mansi M. Kasliwal California Institute of Technology

Dawn of Gravitational Wave Astronomy

Sites of r-process nucleosynthesis?

e.g. Li & Paczynski 1998, Kulkarni 2005, Roberts et al. 2011, Nakar & Piran 2011, Barnes et al. 2013, Grossman et al. 2013, Metzger et al. 2014, Kasen et al. 2016

January 5, 2017

A Resurgence in TDA Discovery Engines

Optical:

Evryscope, ASASSN, HATPI ZTF, CSS-II, PS, BG, ATLAS

DECAM, HSC, LSST

Radio:

LOFAR, MWA and LWA: meter and decameter-mapping Apertif, Meerkat and Askap: decimetric mapping Infrared: SPIRITS, Palomar Gattini-IR, Polar Gattini-IR Ultra-Violet: CUTIE & ULTRASAT

X-rays and Gamma-rays: Swift, Fermi, MIRAX, Lobster-ISS

G

Abbott et al. 2016 – LVC + EM Teams Joint Paper

Models

SPEED:

Speed of Response Speed of Software Speed of Follow-Up

Coarse Gravitational Wave Localizations

e.g. Kasliwal & Nissanke 2014, Singer et al. 2014

January 5, 2017

bal Relay of Observatories Watching Transients Happen

Optical Hardware

Software Speed

Follow-Up is Key

GW150914: All candidates classified in 2 hours!

Mansi M. Kasliwal

January 5, 2017

Needle in haystack

127676 candidates in subtraction images
78951 do NOT have a quiescent stellar source
15624 are detected twice and NOT asteroids
5803 pass our machine learning threshold

1007 are coincident with a nearby galaxy

13 were vetted by human scanners

 $\mathbf{8}$ were scheduled for follow-up spectroscopic observations

 $\mathbf{0}$ were associated with the gravitational wave

Kasliwal et al. 2016

Global Relay of Observatories Watching Transients Happen

Census of the Local Universe (CLU Galaxy Catalog)

Para Cash

Dave Cook 237.08

BUT...

What if even 2% of the neutrons fail to escape?

- What if the ejecta mass is small and dominated by lanthanides?
- What if the lifetime of the hypermassive neutron star is too short?

Deep I & z-band Searches

CTIO-DECAM 4m, 3 deg² Subaru HSC 8.2m, 1.8 deg²

LSST 6.7m, 9.6 deg²

BUT...

What if opacities push the emission entirely in the infrared beyond 1 micron?

Infrared

WFCAM on UKIRT 0.16 deg² on 3.8m

VIRCAM on VISTA 0.6 deg² on 4.1m

Space

Stay Tuned: 25 deg² J-band imager at Palomar this summer!

Caution is the better part of valor

It could be fast

- It could be red
- It could be temporally coincident
- It could be next to a nearby galaxy

BUT unrelated!

"Spectrum is Truth"

Thank you

January 5, 2017

TDA in the LSST era

PTF: 4 x 10⁴ events/night ZTF: 3 x 10⁵ events/night LSST: 2 x 10⁶ events/night

Technical	develop algorithms & software for detection & classification
Scientific	discover new transient & variable phenomena
Organizational	organize collaborations and followup strategies with real data

GROWTH builds a global community ready to contribute LSST time-domain science!

SPIRITS:

SPitzer InfraRed Intensive Transients Survey

Cycles 10-13 1410 hours of Spitzer mid-IR 190 Galaxies x 14 epochs (PI Kasliwal)

Every Year:

110 nights of near-IR imaging66 nights of optical imaging33 nights of spectroscopy

147 transients (35 SPRITEs)1948 strong variables

A New Infrared Discovery Engine?

