

S. Bradley Cenko - NASA GSFC and Univ. Maryland

Electromagnetic Counterparts to Gravitational Waves

A Most Remarkable Discovery

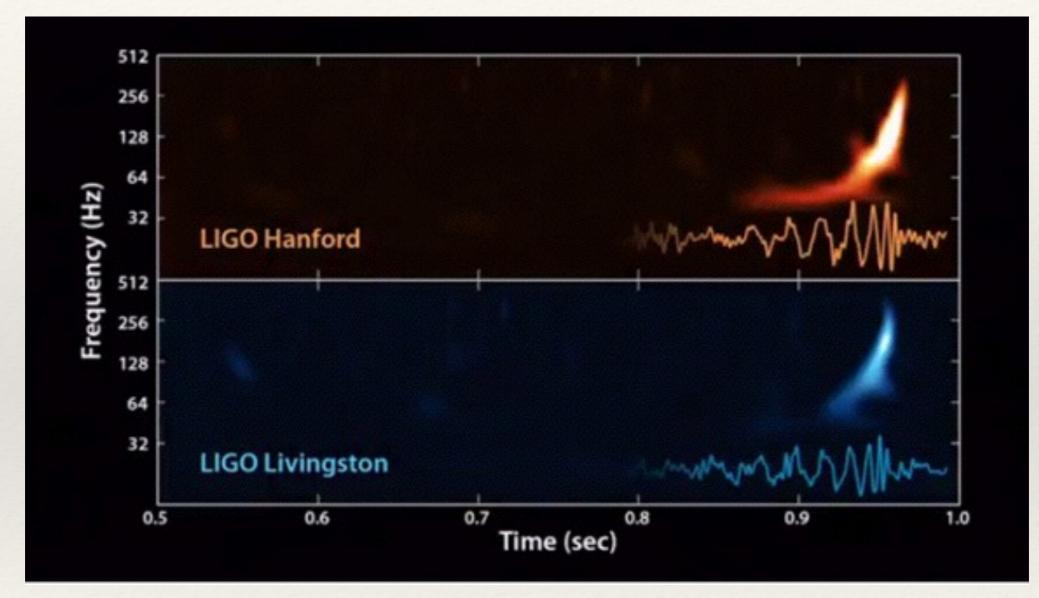


Image Credit: NSF

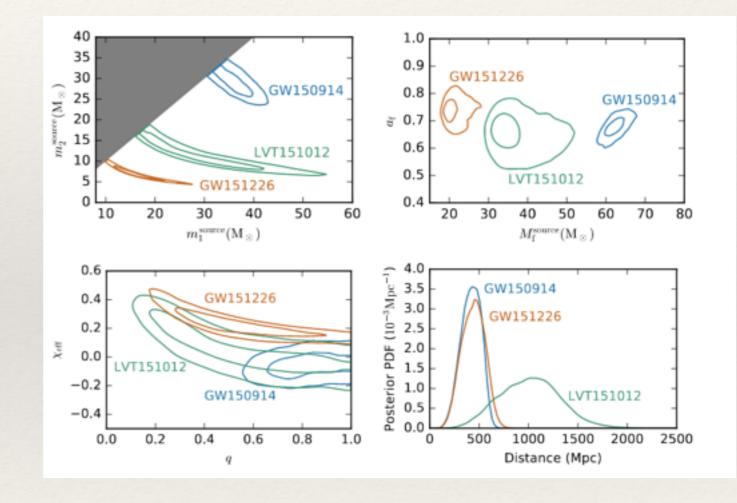
GW150914: The first direct detection of gravitational waves!

LiveSlides web content

To view

Download the add-in.

liveslides.com/download


Start the presentation.

GW Parameter Estimation

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	$7.5 imes 10^{-8}$	$7.5 imes 10^{-8}$	0.045
Significance	$> 5.3 \sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1\substack{+3.7 \\ -4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass <i>M</i> ^{source} /M _☉	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass M ^{source} /M _☉	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
Effective inspiral spin Xeff	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0\substack{+0.3 \\ -0.2}$
Final mass $M_{\rm f}^{\rm source}/{\rm M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin $a_{\rm f}$	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{rad}/(M_{\odot}c^2)$	$3.0\substack{+0.5\\-0.4}$	$1.0\substack{+0.1 \\ -0.2}$	$1.5\substack{+0.3 \\ -0.4}$
Peak luminosity $\ell_{peak}/(erg s^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance DL/Mpc	$420\substack{+150 \\ -180}$	$440\substack{+180 \\ -190}$	$1000\substack{+500\\-500}$
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20\substack{+0.09\\-0.09}$
Sky localization $\Delta\Omega/deg^2$	230	850	1600

GR 😏

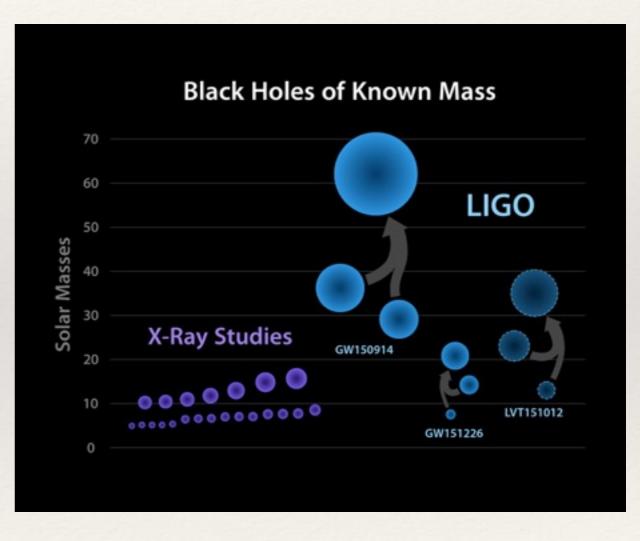
Global Relay of Observatories Watching Transients Happen

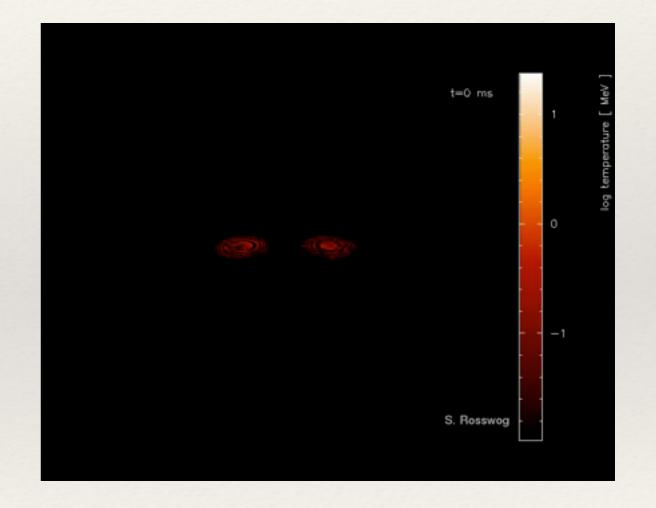
Abbott et al. 2016

Astrophysical Implications

- LIGO discoveries are only *confirmed* binary black hole systems, and *most massive* "stellar-mass" black holes ever found
- Two competing hypotheses for how to generate such massive black holes:
 - Low metallicity environment (leads to very massive progenitor stars)
 - Dynamical interactions in dense stellar environments (e.g., clusters)

Fransients Happer




Image Credit: LVC

Why Electromagnetic Counterparts?

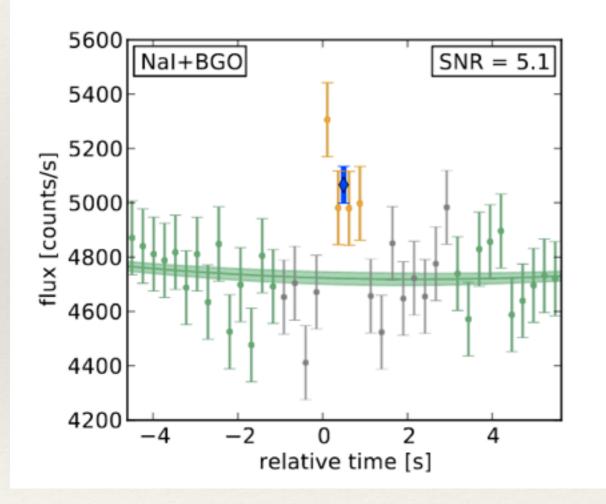
- Redshifts (together with improved distances, can do cosmology)
- Astrophysical context (host galaxy, stellar populations, star formation, metallicity, ...)
- r-process nucleosynthesis

 (possibly dominant source of
 heavy elements such as Au and
 Pt)

Rosswog et al., 2013

EM Counterparts I: Binary Stellar-Mass BH

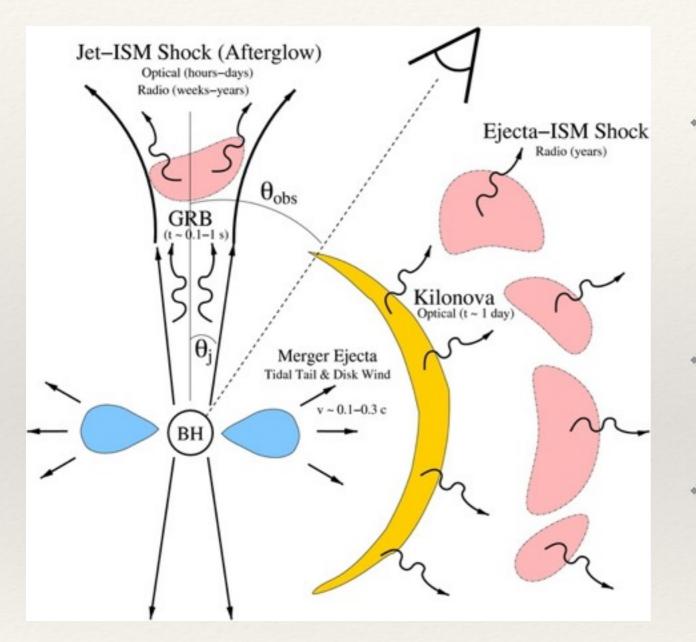
EM Counterparts I: Binary Stellar-Mass BH



Cenko et al. 2014: Theory of BBH Mergers, ESP Journal of The Obvious

EM Counterparts I: Binary Stellar-Mass BH

GBM detectors at 150914 09:50:45.797 +1.024s

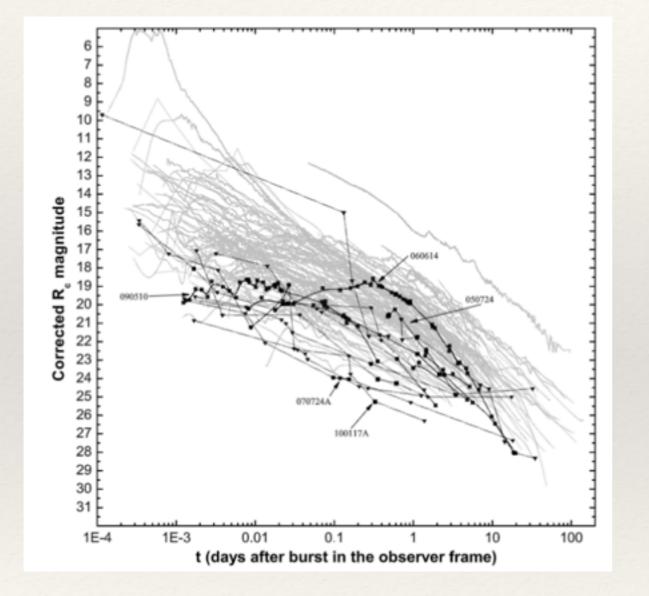

Weak γ-ray signal 0.4 s after the GW150914 detection identified with *Fermi*-GBM.
But no such signal seen from other events (despite more favorable orientations)

Connaughton et al. 2016

EM Counterparts II: Binary Neutron Star

Metzger & Berger 2013

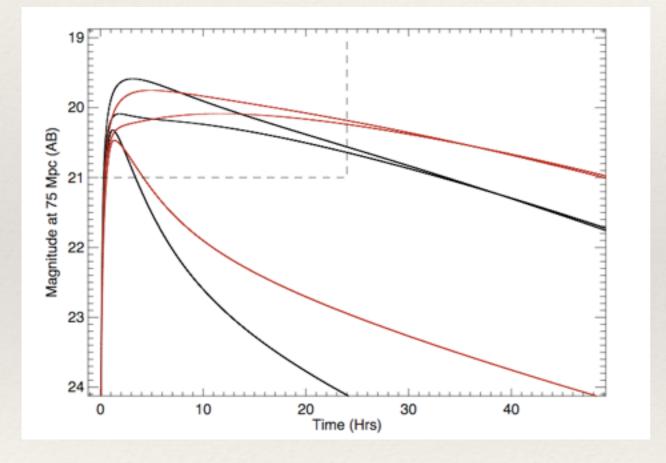
Transients Happer


 For binary NS system, accretion onto newly formed BH can lead to bright EM emission

Gamma-Ray Burst: Relativistic
 Ejecta along merger axis

 "Kilonova": r-process nucleosynthesis from dynamical ejecta (i.e., isotropic)

EM Counterparts II: Binary Neutron Star



- Short GRB *afterglows*: very bright (up to 18 mag observed, not correcting for GW horizon distance), but:
 - Fade rapidly (time scale of hours to days)
 - * Highly beamed (only 1 in ~
 25 events will have jet oriented towards Earth)

Kann et al. 2011

EM Counterparts II: Binary Neutron Star

Kasliwal et al. 2016

Kilonova emission:

- Relatively faint and red (due to opacity from heavy elements)
- Lasts hours to ~ week(depending on composition)
- But should be isotropic

EM Sky Localizations

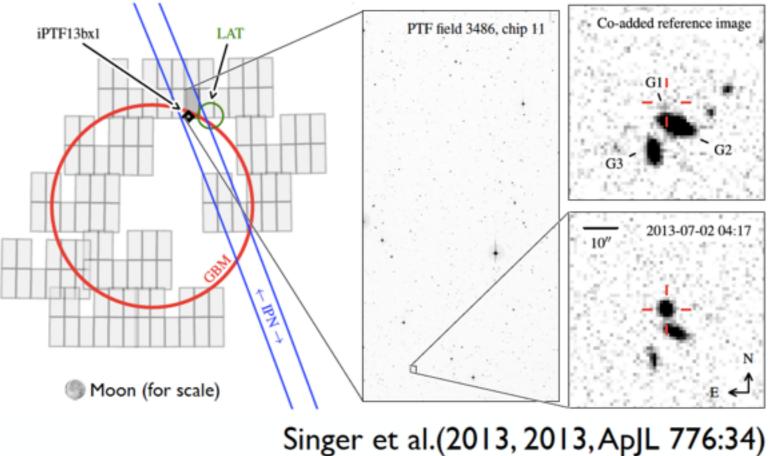
Localizations of hundreds to thousands of square degrees ⇒ Large-area Facilities

EM+GW Strategy: GROWTH!

- Tile large-area GW localizations with widefield P48 telescope
- Targeted follow-up of interesting transient candidates with facilities in the GROWTH network
- Intra-night cadence critical for (expected) short variability time scales

The GW Dining Experience

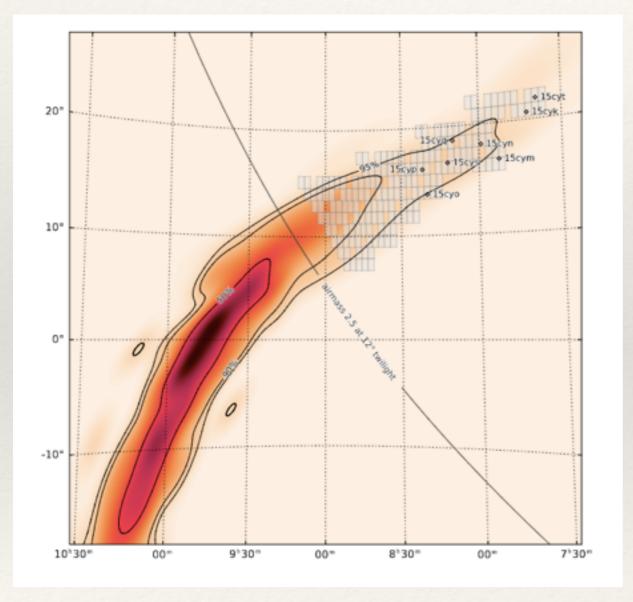
Course	Timeline	Detectors	BNS Horizon Distance	Results
Amuse-bouche (O1)	Sep-Dec 2015	2 LIGO	75 Mpc	3 BBHs : 0/1 Counterparts
Appetizer (O2)	Aug-Dec 2016	2 LIGO + Virgo	100 Mpc	TBD (Soon!)
Soup/Salad (O3)	2017-2018	2 LIGO + Virgo	150 Mpc	TBD
Main Course (O4+)	2019+	2 LIGO + Virgo + KAGRA + Indigo (2023)	200 Mpc	TBD



Abbott et al. 2016

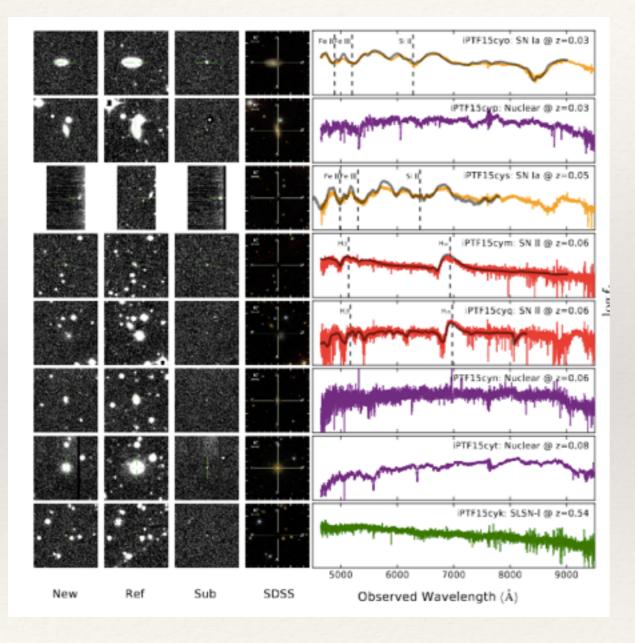
Pre-O1 Results: Fermi-iPTF Follow-Up

(Almost exactly) one year after IPN GRB: Discovery & redshift of a GBM GRB in 71 deg²


Singer et al.(2013, 2013, ApJL 776:34 http://dx.doi.org/10.1088/2041-8205/776/2/L34

- Test run for aLIGO: GRBs discovered by *Fermi* GBM
- Poorly localized (>~ 100 square degrees) with bright, but rapidly fading optical counterparts
- Identified 8 optical afterglows (out of 35 searched fields), including several very nearby (and hence rare events)
- Thesis project of Leo
 Singer

Singer et al. 2013



- First GW trigger localization
 largely in Southern hemisphere
 (only ~ 2% of initial
 localization accessible to iPTF!)
- Nonetheless, went through standard iPTF image subtraction and vetting to identify 8 candidates in the error region

Kasliwal et al. 2016

- All candidates acquired prompt same-night (few hours!) spectroscopic classification
- Not surprisingly, all unrelated to GW event
- Nice demonstration of pipeline capabilities and follow-up from GROWTH facilities

Kasliwal et al. 2016

IPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL WAVE TRIGGER GW150914

M. M. KASLIWAL¹, S. B. CENKO^{2, 3}, L. P. SINGER^{2, 4}, A. CORSI⁵, Y. CAO¹, T. BARLOW¹, V. BHALERAO⁶, E. BELLM¹, D. COOK¹, G. E. DUGGAN¹, R. FERRETTI⁷, D. A. FRAIL⁸, A. HORESH⁹, R. KENDRICK¹⁰, S. R. KULKARNI¹, R. LUNNAN¹, N.
 PALLIYAGURU⁵, R. LAHER¹¹, F. MASCI¹², I. MANULIS⁹, A. A. MILLER^{1,13,14}, P. E. NUGENT^{15,16}, D. PERLEY¹⁷, T. A. PRINCE¹, R.
 M. QUIMBY^{18,19}, J. RANA⁶, U. REBBAPRAGADA¹³, B. SESAR²⁰, A. SINGHAL⁶, J. SURACE¹¹, A. VAN SISTINE²¹

¹ Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
--

²Astrophysics Science Division, NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771, USA

³Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA

⁴NASA Postdoctoral Program Fellow

⁵Texas Tech University, Physics Department, Lubbock, TX 79409-1051, USA

⁶Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune 411007, India

⁷The Oskar Klein Centre, Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

⁸National Radio Astronomy Observatory, Socorro NM

⁹Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel

¹⁰Lockheed Martin Space Systems Company, Palo Alto, CA

¹¹Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125, U.S.A.

¹²Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA

¹³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

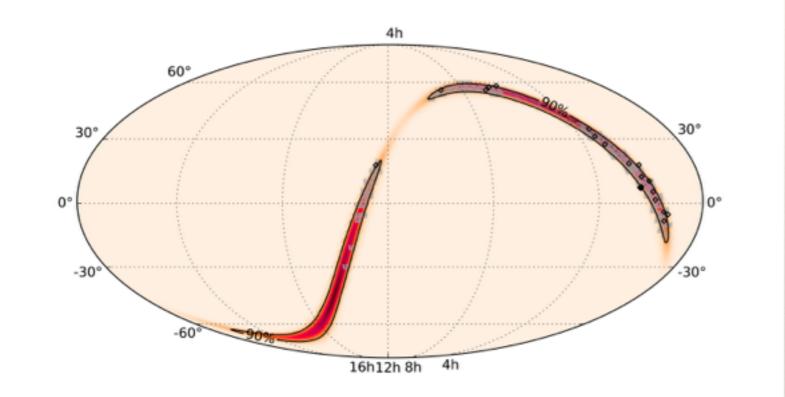
¹⁴Hubble Fellow

¹⁵Astronomy Department, University of California at Berkeley, Berkeley, CA 94720, USA

¹⁶Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720, USA

¹⁷Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, Copenhagen, DK-2100, Denmark

¹⁸San Diego State University, San Diego CA


¹⁹Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

²⁰Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany

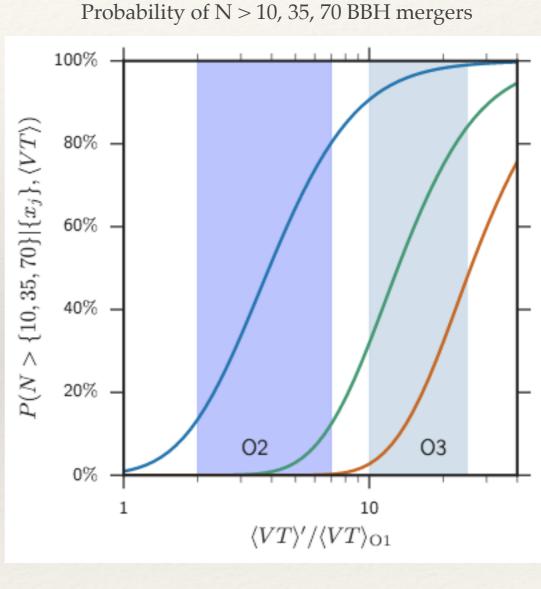
²¹Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Second (bona fide)
GW trigger
localization much
better positioned: able
to image ~ 50%
localization region
with P48

Kasliwal et al, in prep

name	RA Dec (iPTF)	Classification	VLA epoch	Frequency	Flux or 3σ UL
	(hh:mm:ss deg:mm:ss)		(MJD)	(GHz)	(µJy beam ^{−1})
iPTF15fhl	12:28:13.60 17:37:01.4	Ic	57386.436	4.9	358 ± 22
-	-			7.3	258 ± 18
-			57394.386	4.9	339 ± 20
-				7.3	203 ± 14
-		-	57408.299	4.9	414 ± 34
-				7.3	322 ± 28
iPTF15fgl	02:32:59.78 +18:38:07.7	Ibn	57395.175	4.9	60.6 ± 8.9
			-	7.3	37.7 ± 8.5
-			57401.127	4.9	75.4 ± 9.4
-				7.3	29.5 ± 9.1
-		-	57400.096	2.9	86 ± 26
-			-	9.0	35.5 ± 7.0
-		-	-	14.6	25.2 ± 6.5
-		-	57407.126	5.2	59 ± 11
-				7.4	57 ± 11
-			57409.070	3.0	97 ± 28
-				9.0	31.2 ± 7.2
-	-			14.7	28.3 ± 6.7

Palliyaguru et al. 2016


- Over course of O1, 16 iPTF candidates followed up with radio observations (for all 3 triggers)
- Radio observations useful to distinguish "ordinary" transients (e.g., SNe) from potential GW counterparts

O2 Prospects (Aug 16 - Jun 17)

- O2 run expected to begin ~
 August 2016
- * aLIGO detectors upgraded sensitivity \Rightarrow O(10) BBH detections expected
- Possible first direction detection of NS-NS or NS-BH merger
- aVirgo expected to come online at end of run, will greatly reduce size of localizations

Abbott et al. 2016

O3+ Prospects: Zwicky Transient Facility

ZTF will survey an order of magnitude faster than PTF.

	PTF	ZTF
Active Area	7.26 deg ²	47 deg ²
Overhead Time	46 sec	<15 sec
Optimal Exposure Time	60 sec	30 sec
Relative Areal Survey Rate	1x	14.7x
Relative Volumetric Survey Rate	1x	12.3x

Existing PTF camera

MOSAIC 12k

3750 deg²/hour

 \Rightarrow 3 π survey in 8 hours

>250 observations/field/year for uniform survey

New ZTF camera:

16 6k x 6k e2v CCDs

Together with increased detection rate of NS binaries, ZTF will be significantly more powerful for optical counterpart searches: same depth but 10x area!

GR SWTH

EM+GW Summary

- Detection of EM counterparts would enable extremely exciting advances in what is already a groundbreaking new field (gravitational wave astronomy)
- * Our GROWTH network of global telescopes is ideally suited to this complex task: wide-field searches with iPTF/ZTF and same-night follow-up by partners around the globe
- * First NS binaries (either NS-NS or NS-BH) expected in next few years, same timeline as ZTF, so watch this space!

